How Much Does It Cost To Build A Chatbot In 2019?

, , , ,

We are often asked this by clients looking to start their first chatbot project. Like most software projects the price really depends on the scale and complexity of the project. This will govern the effort involved to build the bot and define whether it needs to be a custom chatbot or off the shelf solution.

So, let’s take a look at the key drivers impacting the price for custom chatbot development.

Channel

The first one is the channel in which the bot should function. By this, I mean where the bot will be used. It could be as a website widget implemented as a popup interface or webpage or deployed into existing messaging platforms. Facebook Messenger, Slack, Telegram, Viber, Google Assitant are just a few examples with some providing more complex UI elements which can be utilised in your bot.

There are a number of really good bot building platforms for creating UI chatbot interfaces such as Botstar, Chatfuel and Manychat; these offer some free templates and the ability to create chatbots which can be deployed to websites and Facebook Messenger. These Bot building platforms offer some good features: Visual Flow Editors, APIs & Webhook Integrations, Templates, Broadcasting etc. In our experience, we have found that even with free templates there are some costs due to setup and minor customisation. So our minimum price is around £500.

Natural Language Ability

If a chatbot is required to support more complex natural language processing features and not just UI elements such as buttons then this will mean that additional effort is needed to train the bot and design and implement a more complex conversational flow. These sort of bots start at around £1500. We utilise Dialogflow Natural Language Processing to offer these types of solutions.

The complexity, scope and volume of the required conversational ability effects cost. This relates to specifics such as:
Number of branches in the conversation tree.
Quantity of questions that have to be handled by the chatbot.
Complexity of conversational ability ie. support for complex user enquires.
So chatbots which combine richer elements with complex conversational ability can be in the region of £1500 – £3000

Integration

The other area which will impact cost is dependent: what the chatbot will need to do carry out its role? Will the chatbot need to integrate with current systems to provide its responses? Will it need to hand over to live agents? Connect with CRM and ticketing solutions? Some chatbots may need to carry out complex interactions to provide answers to customer queries. Bots can even call systems utilising Artificial intelligence to provide relevant information based on historical chat data, for example using, https://www.tensorflow.org.  With so many possibilities for bot features It’s hard to estimate the price here, but these types of chatbots cost from £4000.  For each integration, we would suggest a cost of £1000-2000 it really depends on the amount of development effort required for each one.

Languages and Features

Chatbots are capable of supporting different languages, as long as these are supported by the NLP engine it’s possible to add different language permutations fairly easily. However, each language will need its own testing so costs can be in the region of £500-1000 for each language.

Finally, depending on which channel the bot will work in there is also scope to provide other functionality such as voice capability for web chatbots or enhanced chatbot interface features. Again costs depend on the amount of complexity and effort involved in building each feature. As an example adding voice interaction to a Web chatbot would be £500.

Flexibility

As you can see, the cost of a chatbot project can vary dependent on the features required. However, the cost of a capable chatbot does not have to be prohibitive and it’s often a good idea to start small and add features as business needs require them.

At The Bot Forge, whatever the cost we propose for your chatbot project our aim is to create value for your business and hopefully form a long-lasting relationship.

Developing a Chatbot? 6 Common Mistakes to Avoid

, , , , , , , ,

If you are looking to streamline certain operations of your business, implementing a chatbot is a great way to go about it. After all, you can use technologies such as artificial intelligence (AI) and natural language processing (NLP) so that it can follow different types of conversations with users and provide relevant responses where necessary.

Chatbots are no longer a gimmicky tool available on the internet, as they have gained popularity and sophistication many users are incorporating them into their digital strategy. For example, a large number of businesses now use bots as part of their customer service. As these chatbots never go offline, they are always available to assist users, at any given time of day.

It is a lot cheaper for a business to implement a bot as part of its customer service than hire employees. If you employ an individual, you have to train the person and provide a salary and vacation time. One example is one of our clients https://amicable.io who replaced call centre resource with a chatbot to book client meetings.

Chatbots have a lot of advantages, which explains why businesses want to make the most of them. However, while creating these bots, it is natural to make errors, which hampers the user experience. As this might be the first or nth time you are developing a chatbot, you want to make sure it functions as expected. Here are six common mistakes to avoid along with how you can overcome them:

Assuming every user wants to talk

You tend to believe that everyone who visits your page or installs the chatbot on Slack, or other popular messaging platforms wish to start talking to it immediately. However, most of the people on the internet don’t want to communicate with the bot, unless it is necessary.

One reason why chatbots are great marketing tools is that they can engage with prospects by answering important questions. As a result, it brings down the sales friction, making it simpler for the user to invest in what you have to offer.

If your bot starts to message the individual as soon as he/she opens it, there is a high chance the person will find it annoying. A better practice would be to wait for the user to respond or you can leave instructions in the description on how to start conversing with the chatbot. Our sports events Facebook Messenger chatbot Carly utilises this kind of functionality enabling users to set push notifications for their any new sports events based on their own criteria.

Failing to track its performance

Since the chatbot makes use of the latest technological advancements in the industry, you might assume that you shouldn’t keep an eye on its performance. After all, you spent a considerable portion of your time training it, so that it can have a continuous conversation with your customers.

However, you will never know the effectiveness of your bot, if you don’t track the key performance indicators (KPI). These metrics provide a deeper insight into how you can continue to improve your chatbot. For example, you can see where most of the users tend to leave the conversation. With this data, you can think of different ways to keep them engaged so that they continue to talk to your bot. We feel that the history and training tools provided by Dialogflow enable us to track chatbot performance effectively.

Forgetting to list in directories

Once the chatbot is up and running on various messaging platforms or your website, you think you completed your job. All your visitors have to do is start talking to the bot, and it will help them in their tasks.

However, not everyone will know about the existence of your chatbot. Several messaging platforms may not have powerful search, which makes it harder to discover your bot. The best practice is to find third-party websites and lists your chatbot in it. As a result, if people look for your bot on Google or other search engines, the chances of it popping up in the first page of results goes up significantly. The best place to market your own new bot is on your website, why not write a blog post about your chatbot journey, you can guarantee other companies will be interested in your journey.

Impersonal conversations

The reason why people don’t like talking to bots is that the conversation tends to be boring and bland. As a result, they prefer to converse with human beings, as the experience is better in every way.

Think about it, would you like talking to a chatbot which sounds like it is speaking in a monotone? Rather than putting your bot in the same position, you should think of different ways to spice up the conversation. For example, you can ask the user what the chatbot should call the individual while talking to one another.

One thing is key here and we have seen this in our experience: to gain better customer satisfaction it’s better to explain to your users that your bot is a chatbot and not try and masquerade as a human. If users are aware they are talking to a chatbot from the off it will gain confidence and improve the customer experience as the user becomes more forgiving.

Not paying attention to its tone

Since the entire conversation between the chatbot and its users is going to take place via text, you need to pay close attention to its tone. Using the right type of communication will determine whether your bot performs well among its intended target audience.

While this tends to be challenging, there are several ways you can overcome this obstacle. For example, you can ask a small number of people from your target audience, what tone they would find appropriate. At the same time, you can also have a beta group, which allows you to experiment and see which one works well. Matching tone to the industry and subject matter is important to build a satisfying experience for your chatbot users.

Help and Live Agents

Since the purpose of the chatbot is to reduce the workload of your employees, you tend to assume that you don’t need a live agent. The problem with testing is that it may not take into account all the variables present in real-world scenarios. As a result, when you deploy your chatbot, it might not know how to handle a specific question.

Due to this reason, it can go on an endless loop, and the only way out of the conversation is to quit or restart the chatbot. An excellent way to overcome this problem is to allow your chatbot to ask a live agent to join the conversation during this situation. Once the employee helps out the user, he/she can provide information to the developers on how to improve the communication skills of the bot.

It’s also important to provide easy help for users to access during the bot conversation. At The Bot Forge we always implement a help feature for our chatbots so users know what they can do and how they get back on track our Facebook Messenger chatbot for the Fred Whitton Challenge is a perfect example.

Chatbots are becoming a great tool for businesses. You can use them to make life easier for your clients, by assisting them in various functions. By knowing what the common mistakes are, you can avoid them entirely and design the best bots in the industry

Why Dialogflow?

Dialogflow is Google’s human-computer interaction developer which is based on natural language conversations. At The Bot Forge, Dialogflow is our platform of choice for chatbot construction.

There’s three main reasons for why we’re amongst companies such as Domino’s and Ticketmaster who make Dialogflow their chatbot platform of choice.

  1. Flexible coding: Thanks to Dialogflow’s in-line code editor, the time taken to complete code-related tasks is quicker than with other platforms. The prime benefit here is that we’re then able to spend more time perfecting the conversational experience.
  2. Scalability: Whether you start with 1,000 or 100,000 users, the platform can scale to your needs. As Dialogflow is hosted on the Google Cloud Platform, this allows the potential to support a user base of hundreds of millions, if required.
  3. Inbuilt machine learning: Arguably the biggest benefit of the platform in comparison to others is the availability of machine learning and natural language processing technologies. The access to these features allow us to create a richer and more natural conversational experience for your users. Dialogflow makes this possible by allowing us to extract data from a given conversation, in order to train our agents to understand user intents. Plus, as the technologies are already built into the platform, we’re able to construct your application much faster.

To ensure that we’re using the right platform for our clients’ needs, we continuously refresh our knowledge of other bot construction tools, such as The Microsoft Bot Framework. A benefit of using this platform from a developer’s perspective is the availability of templates to choose from, which allow for a more time efficient development. The IBM Watson Assistant is another platform that a developer may favour, as the testing the bot is simpler than it is on other competing platforms. If a priority is to feature your bot over a wide range of locations, Recast.AI may be a good option for its availability on 14 different platforms.

But, these platforms aren’t without their weaknesses. Unlike Dialogflow, Microsoft Bot Framework is lacking in the tools which help to create the “brains” of the bot, which is important for the sophistication that users are beginning to expect. Also, a downside of IBM Watson Assistant is the unintuitive relationship between intents (representation of user’s meaning) and entities (expressions recognised in categories). If you’re interested in how Dialogflow utilises intents and entities, we will be covering this in a future blog post.

Although we understand that there are features of other platforms which can make the development process more efficient, the inbuilt machine learning features of Dialogflow means we can deliver a bot that can produce a much richer conversational experience.

Dialogflow Announce v1 API will be deprecated in October 2019

, , ,

The Dialogflow team announced that they would be deprecating their V1 version of the Dialogflow api in Oct 2019

You can read about their official announcement here

The Bot Forge have been following the progress of the latest V2 api since its official launch in April this year, it’s no surprise that the Dialogflow team have made this announcement as they concentrate their efforts on the new API. However it does have some serious implications for existing chatbots utilising the v1 API.

Migration

You can see some more details about upgrading from V1 to V2 in the official guide here. We also aim to provide some more detailed information about carrying out an upgrade on this blog so watch out for that.

Anyone who already has built out their website chatbots using v1 API, then they should start planning for the migration sooner rather than later. Any new features should be added after the upgrade. The migration is potentially a non-trivial task, considering some chatbots have some fairly complex code driving their fulfilment. If you have a live bot in production our advice is to set up an upgrade chatbot as a copy of your existing bot project and then work through the upgrade there. You can guarantee that changing to V2 will mean that fulfilment and API calls may stop working. Once the upgrade is complete re-testing all bot functionality is strongly advised before setting live.

Chatbot Web Interfaces

We would recommend everyone who is creating custom website chatbots to do so using the v2 API. All our new chatbots are built using the v2API.

The big change for v2 is that it uses Google’s OAuth2 for its authentication, with v1 you could simply use the client access token when calling the v1 API. Implementing the features required to authenticate against the new v2 API means some significant extra development effort.

If you need assistance or advice with your own chatbot v2 upgrade please get in touch, we are Dialogflow experts and would be happy to help!

 

 

 

 

At the Bot Forge, we specialise in building chatbots so you feel free to contact us if you want to discuss further.